
HPCToolkit: Performance Tools for
GPU-Accelerated Computing

John Mellor-Crummey
Rice University

December 14, 2022

1

HPCToolkit Funding Acknowledgments

• Government
– Exascale Computing Project 17-SC-20-SC
– Lawrence Livermore National Laboratory Subcontract B645220
– Argonne National Laboratory Subcontract 9F-60073

• Corporate
– Advanced Micro Devices
– Intel Corporation
– TotalEnergies EP Research & Technology USA, LLC.

2

Rice University’s HPCToolkit Performance Tools
Measure and analyze performance of CPU and GPU-accelerated applications

• Easy: profile unmodified application binaries
• Fast: low-overhead measurement
• Informative: understand where an application spends its time and why

– call path profiles associate metrics with application source code contexts
– optional hierarchical traces to understand execution dynamics

• Broad audience
– application developers
– framework developers
– runtime and tool developers

3

HPCToolkit’s Workflow for CPU Applications

4

HPCToolkit’s Workflow for GPU-accelerated Applications

5

HPCToolkit’s Workflow for GPU-accelerated Applications

6

Step	1:	
• Ensure	that	compilers	record	line	mappings		
• host	compiler/hipcc:	-g	
• nvcc:	-lineinfo	

HPCToolkit’s Workflow for GPU-accelerated Applications

7

Step	2:	
• hpcrun	collects	call	path	profiles	(and	

optionally,	traces)	of	events	of	interest	

Measurement of CPU and GPU-accelerated Applications
• Sampling using timers and hardware counter overflow on the CPU
• Callbacks when GPU operations are launched and (sometimes) completed
• GPU event stream for GPU operations; PC Samples (NVIDIA)

8

Call Stack Unwinding to Attribute Costs in Context

Call path sample

instruction pointer

return address

return address

return address

Calling context tree

• Unwind when timer or hardware counter overflows
– measurement overhead proportional to sampling frequency rather than call frequency

• Unwind to capture context for events such as GPU kernel launches

9

hpcrun: Measure CPU and/or GPU activity
• GPU profiling

– hpcrun -e gpu=xxx <app> ….

• GPU instrumentation (Intel GPU only)
– hpcrun -e gpu=level0,inst=count,latency <app>

• GPU PC sampling (NVIDIA GPU only)
– hpcrun -e gpu=nvidia,pc <app>

• CPU and GPU Tracing (in addition to profiling)
– hpcrun -e CPUTIME -e gpu=xxx -t <app>

•Use hpcrun with job launchers
– jsrun -n 32 -g 1 -a 1 hpcrun -e gpu=xxx <app>
– srun -n 1 -G 1 hpcrun -e gpu=xxx <app>
– aprun -n 16 -N 8 -d 8 hpcrun -e gpu=xxx <app>

10

Profiles: aggregated on the fly
- a calling context tree per thread
- a calling context tree per GPU

stream
- instruction level measurements

CPU traces
- trace of call stack samples

GPU traces
- trace of call stacks that initiate

GPU operations

 xxx ∈ {nvidia,amd,opencl,level0}

HPCToolkit’s Workflow for GPU-accelerated Applications

11

Step	3:	
• hpcstruct	recovers	program	structure	

about	lines,	loops,	and	inlined	functions

hpcstruct: Analyze CPU and GPU Binaries Using Multiple Threads
• Usage

hpcstruct [--gpucfg yes] <measurement-directory>

• What it does
• Recover program structure information

• Files, functions, inlined templates or functions, loops, source lines
• In parallel, analyze all CPU and GPU binaries that were measured by HPCToolkit

⏤default: use size(CPU set)/2 threads
⏤analyze large application binaries with 16 threads
⏤analyze multiple small application binaries concurrently with 2 threads each

• Cache binary analysis results for reuse when analyzing other executions

12

NOTE: --gpucfg yes needed only for analysis of GPU binaries when NVIDIA PC samples were collected

HPCToolkit’s Workflow for GPU-accelerated Applications

13

Step	4:	
• hpcprof/hpcprof-mpi	combines	

profiles	from	multiple	threads	and	
correlate	metrics	to	static	&	dynamic	
program	structure

hpcprof/hpcprof-mpi: Associate Measurements with Program Structure

• Analyze data from modest executions sequentially
hpcprof <measurement-directory>

• Analyze data from large executions in parallel
jsrun -n 2 -a 1 -c 22 -b packed hpcprof-mpi <measurement-directory>

srun -N 2 -n 2 -c 126 hpcprof-mpi <measurement-directory>

14

HPCToolkit’s Workflow for GPU-accelerated Applications

15

Step	4:	
• hpcviewer	-	interactively	explore	

profile	and	traces	for	GPU-accelerated	
applications

Code-centric Analysis with hpcviewer
• Profiling compresses out the temporal dimension

– Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

– N times per second, take a call path sample of each thread
– Organize the samples for each thread along a time line
– View how the execution evolves left to right
– What do we view? assign each procedure a color; view a depth slice of an execution

16

• function calls in full context
• inlined procedures
• inlined templates
• outlined OpenMP loops
• loops

source pane

navigation pane metric pane

view control

metric display

Understanding Temporal Behavior
• Profiling compresses out the temporal dimension

– Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

– N times per second, take a call path sample of each thread
– Organize the samples for each thread along a time line
– View how the execution evolves left to right
– What do we view? assign each procedure a color; view a depth slice of an execution

17

Time

Processes

Call
stack

Time-centric Analysis with hpcviewer

18

M
PI

 ra
nk

s,
O

pe
nM

P
Th

re
ad

s,
 G

PU
 s

tr
ea

m
s

Time

The color at a particular point in a
timeline indicates the CPU procedure
or GPU kernel active at that time at
the selected call stack depth

A depth view showing the history of calling contexts for the thread with the cursor

Call stack pane
shows full calling
context for the
cursor

Minimap indicates part of
execution trace shownA multi-level call stack based view of execution over time

Case Study: GAMESS
• General Atomic and Molecular Electronic Structure System (GAMESS)

– general ab initio quantum chemistry package
• Calculates the energies, structures, and properties of a wide range of chemical systems

• Experiments
• GPU-accelerated nodes at a Perlmutter hackathon

• Single node with 4 GPUs
• Five nodes with 20 GPUs

• GPU-accelerated node on Crusher

19

20

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

GAMESS original

21

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

GAMESS original

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

22GAMESS original

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

23GAMESS original

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

24GAMESS original

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

25GAMESS improved

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

26
GAMESS improved

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

27
GAMESS improved

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

28GAMESS improved

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

29
GAMESS improved

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

30
GAMESS improved

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

31GAMESS improved with better manual distribution of work in input

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

32GAMESS improved adding Rank 0 Thread 0 to GPU streams

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

33

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

34

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

35

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

36

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

37GAMESS improved with PC Sampling

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

38

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

39

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

40

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

41

Time-centric Analysis: GAMESS 16 ranks, 8 GPUs on Crusher

42

Time-centric Analysis: GAMESS 16 ranks, 8 GPUs on Crusher

43

Case Study: PeleC
• An adaptive mesh refinement solver for compressible reacting flows

• Experiment
• PC Sampling on Summit node with NVIDIA GPU

44

Analysis of PeleC using PC Sampling on an NVIDIA GPU

45

9.4% GPU stalls
outside the loop

mostly memory
stalls

Improvement:

pass udata components as scalars
https://github.com/AMReX-Combustion/PelePhysics/pull/192

4% speedup on PeleC PMF drm19 test case

Cause:
passed udata structure pointer to lambda capture

CPU
context

GPU
context

HPCToolkit Status on GPUs
• NVIDIA

• heterogeneous profiles, including GPU instruction-level execution and stalls using PC
sampling

• traces
• AMD

• heterogeneous profiles; no GPU instruction-level measurements within kernels
• measure OpenMP offloading using OMPT interface
• traces

• Intel
• heterogeneous profiles, including GPU instruction-level measurements with kernel

instrumentation and heuristic latency attribution to instructions
• traces

46

Using HPCToolkit at OLCF
• Summit (NVIDIA GPUs)

– module use /gpfs/alpine/csc322/world-shared/modulefiles/ppc64le

– module load hpctoolkit

• Crusher (AMD GPUs)
– module use /gpfs/alpine/csc322/world-shared/modulefiles/x86_64

– module load hpctoolkit

• Join our ECP Engagement Slack and ask questions
– https://join.slack.com/t/hpctoolkit-ecp/shared_invite/zt-1lgrzjt93-

aEB43o3SVgKFy1yFCjwlyA

47

HPCToolkit Resources

• Documentation
• User manual

• http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
• Tutorial videos

• http://hpctoolkit.org/training.html
• recorded demo of GPU analysis: https://youtu.be/vixa3hGDuGg

• Cheat sheet
• https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/home

• Software
• Download hpcviewer GUI binaries for your laptop, desktop, cluster, or supercomputer

• OS: Linux, Windows, MacOS
• Processors: x86_64, aarch64, ppc64le
• http://hpctoolkit.org/download.html

• Install HPCToolkit on your Linux desktop, cluster, or supercomputer using Spack
• http://hpctoolkit.org/software-instructions.html

48

